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1
LIVE ERROR RECOVERY

This application claims the benefit of priority to U.S. Pro-
visional Patent Application Ser. No. 61/746,972, filed Dec.
28, 2012, which is considered part of and is incorporated by
reference in its entirety in the disclosure of this application.

FIELD

This disclosure pertains to computing system, and in par-
ticular (but not exclusively) to link error containment.

BACKGROUND

Advances in semi-conductor processing and logic design
have permitted an increase in the amount of logic that may be
present on integrated circuit devices. As a corollary, computer
system configurations have evolved from a single or multiple
integrated circuits in a system to multiple cores, multiple
hardware threads, and multiple logical processors present on
individual integrated circuits, as well as other interfaces inte-
grated within such processors. A processor or integrated cir-
cuit typically comprises a single physical processor die,
where the processor die may include any number of cores,
hardware threads, logical processors, interfaces, memory,
controller hubs, etc.

As a result of the greater ability to fit more processing
power in smaller packages, smaller computing devices have
increased in popularity. Smartphones, tablets, ultrathin note-
books, and other user equipment have grown exponentially.
However, these smaller devices are reliant on servers both for
data storage and complex processing that exceeds the form
factor. Consequently, the demand in the high-performance
computing market (i.e. server space) has also increased. For
instance, in modern servers, there is typically not only a single
processor with multiple cores, but also multiple physical pro-
cessors (also referred to as multiple sockets) to increase the
computing power. But as the processing power grows along
with the number of devices in a computing system, the com-
munication between sockets and other devices becomes more
critical.

In fact, interconnects have grown from more traditional
multi-drop buses that primarily handled electrical communi-
cations to full blown interconnect architectures that facilitate
fast communication. Unfortunately, as the demand for future
processors to consume at even higher-rates corresponding
demand is placed on the capabilities of existing interconnect
architectures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment of a block diagram for a
computing system including a multicore processor.

FIG. 2 illustrates an embodiment of a computing system
including an interconnect architecture.

FIG. 3 illustrates an embodiment of a interconnect archi-
tecture including a layered stack.

FIG. 4 illustrates an embodiment of a request or packet to
be generated or received within an interconnect architecture.

FIG. 5 illustrates an embodiment of a transmitter and
receiver pair for an interconnect architecture.

FIG. 6 illustrates a representation of an example capability
structure.

FIG. 7 illustrates a representation of an example control
status register.

FIG. 8 illustrates a schematic diagram of example error
logic in accordance with one embodiment.
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FIG. 9 illustrates another schematic diagram of example
error logic in accordance with one embodiment.

FIG. 10 illustrates a flow diagram of an example entry into
an error recovery mode.

FIG. 11 illustrates another flow diagram of an example
entry into an error recovery mode.

FIG. 12 illustrates an embodiment of a block for a comput-
ing system including multiple processor sockets.

FIG. 13 illustrates another embodiment of a block diagram
for a computing system.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth, such as examples of specific types of processors and
system configurations, specific hardware structures, specific
architectural and micro architectural details, specific register
configurations, specific instruction types, specific system
components, specific measurements/heights, specific proces-
sor pipeline stages and operation etc. in order to provide a
thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that these specific
details need not be employed to practice the present inven-
tion. In other instances, well known components or methods,
such as specific and alternative processor architectures, spe-
cific logic circuits/code fir described algorithms, specific
firmware code, specific interconnect operation, specific logic
configurations, specific manufacturing techniques and mate-
rials, specific compiler implementations, specific expression
of algorithms in code, specific power down and gating tech-
niques/logic and other specific operational details of com-
puter system haven’t been described in detail in order to avoid
unnecessarily obscuring the present invention.

Although the following embodiments may be described
with reference to energy conservation and energy efficiency
in specific integrated circuits, such as in computing platforms
or microprocessors, other embodiments are applicable to
other types of integrated circuits and logic devices. Similar
techniques and teachings of embodiments described herein
may be applied to other types of circuits or semiconductor
devices that may also benefit from better energy efficiency
and energy conservation. For example, the disclosed embodi-
ments are not limited to desktop computer systems or Ultra-
books™. And may be also used in other devices, such as
handheld devices, tablets, other thin notebooks, systems on a
chip (SOC) devices, and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net protocol devices, digital cameras, personal digital assis-
tants (PDAs), and handheld PCs. Embedded applications
typically include a microcontroller, a digital signal processor
(DSP), a system on a chip, network computers (NetPC), set-
top boxes, network hubs, wide area network (WAN) switches,
or any other system that can perform the functions and opera-
tions taught below. Moreover, the apparatus’, methods, and
systems described herein are not limited to physical comput-
ing devices, but may also relate to software optimizations for
energy conservation and efficiency. As will become readily
apparent in the description below, the embodiments of meth-
ods, apparatus’, and systems described herein (whether in
reference to hardware, firmware, software, or a combination
thereof) are vital to a ‘green technology’ future balanced with
performance considerations.

As computing systems are advancing, the components
therein are becoming more complex. As a result, the intercon-
nect architecture to couple and communicate between the
components is also increasing in complexity to ensure band-
width requirements are met for optimal component operation.
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Furthermore, different market segments demand different
aspects of interconnect architectures to suit the market’s
needs. For example, servers require higher performance,
while the mobile ecosystem is sometimes able to sacrifice
overall performance for power savings. Yet, it’s a singular
purpose of most fabrics to provide highest possible perfor-
mance with maximum power saving. Below, a number of
interconnects are discussed, which would potentially benefit
from aspects of the invention described herein.

Referring to FIG. 1, an embodiment of a block diagram for
a computing system including a multicore processor is
depicted. Processor 100 includes any processor or processing
device, such as a microprocessor, an embedded processor, a
digital signal processor (DSP), a network processor, a hand-
held processor, an application processor, a co-processor, a
system on a chip (SOC), or other device to execute code.
Processor 100, in one embodiment, includes at least two
cores—core 101 and 102, which may include asymmetric
cores or symmetric cores (the illustrated embodiment). How-
ever, processor 100 may include any number of processing
elements that may be symmetric or asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of hard-
ware processing elements include: a thread unit, a thread slot,
a thread, a process unit, a context, a context unit, a logical
processor, a hardware thread, a core, and/or any other ele-
ment, which is capable of holding a state for a processor, such
as an execution state or architectural state. In other words, a
processing element, in one embodiment, refers to any hard-
ware capable of being independently associated with code,
such as a software thread, operating system, application, or
other code. A physical processor (or processor socket) typi-
cally refers to an integrated circuit, which potentially includes
any number of other processing elements, such as cores or
hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state is
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
an independent architectural state, wherein the independently
maintained architectural states share access to execution
resources. As can be seen, when certain resources are shared
and others are dedicated to an architectural state, the line
between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

Physical processor 100, as illustrated in FIG. 1, includes
two cores core 101 and 102. Here, core 101 and 102 are
considered symmetric cores, i.e. cores with the same configu-
rations, functional units, and/or logic. In another embodi-
ment, core 101 includes an out-of-order processor core, while
core 102 includes an in-order processor core. However, cores
101 and 102 may be individually selected from any type of
core, such as a native core, a software managed core, a core
adapted to execute a native Instruction Set Architecture
(ISA), a core adapted to execute a translated Instruction Set
Architecture (ISA), a co-designed core, or other known core.
In a heterogeneous core environment (i.e. asymmetric cores),
some form of translation, such a binary translation, may be
utilized to schedule or execute code on one or both cores. Yet
to further the discussion, the functional units illustrated in
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core 101 are described in further detail below, as the units in
core 102 operate in a similar manner in the depicted embodi-
ment.

As depicted, core 101 includes two hardware threads 101a
and 1015, which may also be referred to as hardware thread
slots 101a and 1015. Therefore, software entities, such as an
operating system, in one embodiment potentially view pro-
cessor 100 as four separate processors, i.e., four logical pro-
cessors or processing elements capable of executing four
software threads concurrently. As alluded to above, a first
thread is associated with architecture state registers 101q, a
second thread is associated with architecture state registers
10154, a third thread may be associated with architecture state
registers 102a, and a fourth thread may be associated with
architecture state registers 1025. Here, each of the architec-
ture state registers (101a; 1015; 1024, and 1025) may be
referred to as processing elements, thread slots, or thread
units, as described above. As illustrated, architecture state
registers 101a are replicated in architecture state registers
10154, so individual architecture states/contexts are capable of
being stored for logical processor 101a and logical processor
1015. In core 101, other smaller resources, such as instruction
pointers and renaming logic in allocator and renarner block
130 may also be replicated for threads 1011a and 1015. Some
resources, such as re-order buffers in reorder/retirement unit
135, ILTB 120, load/store butfers, and queues may be shared
through partitioning. Other resources, such as general pur-
pose internal registers; page-table base register(s), low-level
data-cache and data-TLB 115, execution unit(s) 140, and
portions of out-of-order unit 135 are potentially fully shared.

Processor 100 often includes other resources, which may
be fully shared, shared through partitioning, or dedicated
by/to processing elements. In FIG. 1, an embodiment of a
purely exemplary processor with illustrative logical units/
resources of a processor is illustrated. Note that a processor
may include, or omit, any of these functional units, as well as
include any other known functional units, logic, or firmware
not depicted. As illustrated, core 101 includes a simplified,
representative out-of-order (OOQO) processor core. But an
in-order processor may be utilized in different embodiments.
The OOO core includes a branch target buffer 120 to predict
branches to be executed/taken and an instruction-translation
buffer (I-TLB) 120 to store address translation entries for
instructions.

Core 101 further includes decode module 125 coupled to
fetch unit 120 to decode fetched elements. Fetch logic, in one
embodiment, includes individual sequencers associated with
thread slots 101a, 1015, respectively. Usually core 101 is
associated with a first ISA, which defines/specifies instruc-
tions executable on processor 100. Often machine code
instructions that are part of the first ISA include a portion of
the instruction (referred to as an opcode), which references/
specifies an instruction or operation to be performed. Decode
logic 125 includes circuitry that recognizes these instructions
from their opcodes and passes the decoded instructions on in
the pipeline for processing as defined by the first ISA. For
example, as discussed in more detail below decoders 125, in
one embodiment, include logic designed or adapted to recog-
nize specific instructions, such as transactional instruction.
As a result of the recognition by decoders 125, the architec-
ture or core 101 takes specific, predefined actions to perform
tasks associated with the appropriate instruction. It is impor-
tant to note that any of the tasks, blocks, operations, and
methods described herein may be performed in response to a
single or multiple instructions; some of which may be new or
old instructions. Note decoders 126, in one embodiment,
recognize the same [SA (or a subset thereof). Alternatively, in
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a heterogeneous core environment, decoders 126 recognize a
second ISA (either a subset of the first ISA or a distinct I[SA).

In one example, allocator and renamer block 130 includes
an allocator to reserve resources, such as register files to store
instruction processing results. However, threads 101a and
10154 are potentially capable of out-of-order execution, where
allocator and renamer block 130 also reserves other
resources, such as reorder buffers to track instruction results.
Unit 130 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 100. Reorder/retirement unit 135
includes components, such as the reorder buffers mentioned
above, load buffers, and store buffers, to support out-of-order
execution and later in-order retirement of instructions
executed out-of-order.

Scheduler and execution unit(s) block 140, in one embodi-
ment, includes a scheduler unit to schedule instructions/op-
eration on execution units. For example, a floating point
instruction is scheduled on a port of an execution unit that has
an available floating point execution unit. Register files asso-
ciated with the execution units are also included to store
information instruction processing results. Exemplary execu-
tion units include a floating point execution unit, an integer
execution unit, a jump execution unit, a load execution unit, a
store execution unit, and other known execution units.

Lower level data cache and data translation buffer (D-TLB)
150 are coupled to execution unit(s) 140. The data cache is to
store recently used/operated on elements, such as data oper-
ands, which are potentially held in memory coherency states.
The D-TLB isto store recent virtual/linear to physical address
translations. As a specific example, a processor may include a
page table structure to break physical memory into a plurality
of virtual pages.

Here, cores 101 and 102 share access to higher-level or
further-out cache, such as a second level cache associated
with on-chip interface 110. Note that higher-level or further-
out refers to cache levels increasing or getting further way
from the execution unit(s). In one embodiment, higher-level
cache is a last-level data cache—last cache in the memory
hierarchy on processor 100—such as a second or third level
data cache. However, higher level cache is not so limited, as it
may be associated with or include an instruction cache. A
trace cache—a type of instruction cache—instead may be
coupled after decoder 125 to store recently decoded traces.
Here, an instruction potentially refers to a macro-instruction
(i.e. a general instruction recognized by the decoders), which
may decode into a number of micro-instructions (micro-op-
erations).

In the depicted configuration, processor 100 also includes
on-chip interface module 110. Historically, a memory con-
troller, which is described in more detail below, has been
included in a computing system external to processor 100. In
this scenario, on-chip interface 11 is to communicate with
devices external to processor 100, such as system memory
175, a chipset (often including a memory controller hub to
connect to memory 175 and an I/O controller hub to connect
peripheral devices), a memory controller hub, a northbridge,
or other integrated circuit. And in this scenario, bus 105 may
include any known interconnect, such as multi-drop bus, a
point-to-point interconnect, a serial interconnect, a parallel
bus, a coherent (e.g. cache coherent) bus, a layered protocol
architecture, a differential bus, and a GTL bus.

Memory 175 may be dedicated to processor 100 or shared
with other devices in a system. Common examples of types of
memory 175 include DRAM, SRAM, non-volatile memory
(NV memory), and other known storage devices. Note that
device 180 may include a graphic accelerator, processor or
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card coupled to a memory controller hub, data storage
coupledto an I/O controller hub, a wireless transceiver, a flash
device, an audio controller, a network controller, or other
known device.

Recently however, as more logic and devices are being
integrated on a single die, such as SOC, each of these devices
may be incorporated on processor 100. For example in one
embodiment, amemory controller hub is on the same package
and/or die with processor 100. Here, a portion of the core (an
on-core portion) 110 includes one or more controller(s) for
interfacing with other devices such as memory 175 or a
graphics device 180. The configuration including an intercon-
nect and controllers for interfacing with such devices is often
referred to as an on-core (or un-core configuration). As an
example, on-chip interface 110 includes a ring interconnect
for on-chip communication and a high-speed serial point-to-
point link 105 for off-chip communication. Yet, in the SOC
environment, even more devices, such as the network inter-
face, co-processors, memory 175, graphics processor 180,
and any other known computer devices/interface may be inte-
grated on a single die or integrated circuit to provide small
form factor with high functionality and low power consump-
tion.

In one embodiment, processor 100 is capable of executing
a compiler, optimization, and/or translator code 177 to com-
pile, translate, and/or optimize application code 176 to sup-
port the apparatus and methods described herein or to inter-
face therewith. A compiler often includes a program or set of
programs to translate source text/code into target text/code.
Usually, compilation of program/application code with a
compiler is done in multiple phases and passes to transform
hi-level programming language code into low-level machine
or assembly language code. Yet, single pass compilers may
still be utilized for simple compilation. A compiler may uti-
lize any known compilation techniques and perform any
known compiler operations, such as lexical analysis, prepro-
cessing, parsing, semantic analysis, code generation, code
transformation, and code optimization.

Larger compilers often include multiple phases, but most
often these phases are included within two general phases: (1)
afront-end, i.e. generally where syntactic processing, seman-
tic processing, and some transformation/optimization may
take place, and (2) a back-end, i.e. generally where analysis,
transformations, optimizations, and code generation takes
place. Some compilers refer to a middle, which illustrates the
blurring of delineation between a front-end and back end of a
compiler. As a result, reference to insertion, association, gen-
eration, or other operation of a compiler may take place in any
of the aforementioned phases or passes, as well as any other
known phases or passes of a compiler. As an illustrative
example, a compiler potentially inserts operations, calls,
functions, etc. in one or more phases of compilation, such as
insertion of calls/operations in a front-end phase of compila-
tion and then transformation of the calls/operations into
lower-level code during a transformation phase. Note that
during dynamic compilation, compiler code or dynamic opti-
mization code may insert such operations/calls, as well as
optimize the code for execution during runtime. As a specific
illustrative example, binary code (already compiled code)
may be dynamically optimized during runtime. Here, the
program code may include the dynamic optimization code,
the binary code, or a combination thereof.

Similar to a compiler, a translator, such as a binary trans-
lator, translates code either statically or dynamically to opti-
mize and/or translate code. Therefore, reference to execution
of code, application code, program code, or other software
environment may refer to: (1) execution of a compiler pro-
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gram(s), optimization code optimizer, or translator either
dynamically or statically, to compile program code, to main-
tain software structures, to perform other operations, to opti-
mize code, or to translate code; (2) execution of main program
code including operations/calls, such as application code that
has been optimized/compiled; (3) execution of other program
code, such as libraries, associated with the main program
code to maintain software structures, to perform other soft-
ware related operations, or to optimize code; or (4) a combi-
nation thereof.

One interconnect fabric architecture includes the Periph-
eral Component Interconnect (PCI) Express (PCle) architec-
ture. A primary goal of PCle is to enable components and
devices from different vendors to inter-operate in an open
architecture, spanning multiple market segments; Clients
(Desktops and Mobile), Servers (Standard and Enterprise),
and Embedded and Communication devices. PCI Expressis a
high performance, general purpose I/O interconnect defined
for a wide variety of future computing and communication
platforms. Some PCI attributes, such as its usage model,
load-store architecture, and software interfaces, have been
maintained through its revisions, whereas previous parallel
bus implementations have been replaced by a highly scalable,
fully serial interface. The more recent versions of PCI
Express take advantage of advances in point-to-point inter-
connects, Switch-based technology, and packetized protocol
to deliver new levels of performance and features. Power
Management, Quality Of Service (QoS), Hot-Plug/Hot-Swap
support, Data Integrity, and Error Handling are among some
of the advanced features supported by PCI Express.

Referring to FIG. 2, an embodiment of a fabric composed
of point-to-point Links that interconnect a set of components
is illustrated. System 200 includes processor 205 and system
memory 210 coupled to controller hub 215. Processor 205
includes any processing element, such as a microprocessor, a
host processor, an embedded processor, a co-processor, or
other processor. Processor 205 is coupled to controller hub
215 through front-side bus (FSB) 206. In one embodiment,
FSB 206 is a serial point-to-point interconnect as described
below. In another embodiment, link 206 includes aerial dif-
ferential interconnect architecture that is compliant with dif-
ferent interconnect standard.

System memory 210 includes any memory device, such as
random access memory (RAM), non-volatile (NV) memory,
or other memory accessible by devices in system 200. System
memory 210 is coupled to controller hub 215 through
memory interface 216. Examples of a memory interface
include a double-data rate (DDR) memory interface, a dual-
channel DDR memory interface, and a dynamic RAM
(DRAM) memory interface.

In one embodiment, controller hub 215 is a root hub, root
complex, or root controller in a Peripheral Component Inter-
connect Express (PCle or PCIE) interconnection hierarchy.
Examples of controller hub 215 include a chipset, a memory
controller hub (MCH), northbridge, an interconnect control-
ler hub (ICH) a southbridge, and a root controller/hub. Often
the term chipset refers to two physically separate controller
hubs, i.e. a memory controller hub (MCH) coupled to an
interconnect controller hub (ICH). Note that current systems
often include the MCH integrated with processor 205, while
controller 215 is to communicate with I/O devices, in a simi-
lar manner as described below. In some embodiments, peer-
to-peer routing is optionally supported through root complex
215.

Here, controller hub 215 is coupled to switch/bridge 220
through serial link 219. Input/output modules 217 and 221,
which may also be referred to as interfaces/ports 217 and 221,
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include/implement a layered protocol stack to provide com-
munication between controller hub 215 and switch 220. In
one embodiment, multiple devices are capable of being
coupled to switch 220.

Switch/bridge 220 routes packets/messages from device
225 upstream, i.e. up a hierarchy towards a root complex, to
controller hub 215 and downstream, i.e. down a hierarchy
away from a root controller, from processor 205 or system
memory 210 to device 225. Switch 220, in one embodiment,
is referred to as a logical assembly of multiple virtual PCI-
t0-PCI bridge devices. Device 225 includes any internal or
external device or component to be coupled to an electronic
system, such as an [/O device, a Network Interface Controller
(NW), an add-in card, an audio processor, a network proces-
sor, a hard-drive, a storage device, a CD/DVD ROM, a moni-
tor, a printer, a mouse, a keyboard, a router, a portable storage
device, a Firewire device, a Universal Serial Bus (USB)
device, a scanner, and other input/output devices. Often in the
PCle vernacular, such as device, is referred to as an endpoint.
Although not specifically shown, device 225 may include a
PCle to PCI/PCI-X bridge to support legacy or other version
PCI devices. Endpoint devices in PCle are often classified as
legacy, PCle, or root complex integrated endpoints.

Graphics accelerator 230 is also coupled to controller hub
215 through serial link 232. In one embodiment, graphics
accelerator 230 is coupled to an MCH, which is coupled to an
ICH. Switch 220, and accordingly 1/O device 225, is then
coupled to the ICH. I/O modules 231 and 218 are also to
implement a layered protocol stack to communicate between
graphics accelerator 230 and controller hub 215. Similar to
the MCH discussion above, a graphics controller or the
graphics accelerator 230 itself may be integrated in processor
205.

Turning to FIG. 3 an embodiment of a layered protocol
stack is illustrated. Layered protocol stack 300 includes any
form of a layered communication stack, such as a Quick Path
Interconnect (QPI) stack, a PCle stack, a next generation high
performance computing interconnect stack, or other layered
stack. Although the discussion immediately below in refer-
ence to FIGS. 2-5 are in relation to a PCle stack, the same
concepts may be applied to other interconnect stacks. In one
embodiment, protocol stack 300 is a PCle protocol stack
including transaction layer 305, link layer 310, and physical
layer 320. An interface, such as interfaces 217, 218, 221, 222,
226,and 231in FIG. 2, may be represented as communication
protocol stack 300. Representation as a communication pro-
tocol stack may also be referred to as a module or interface
implementing/including a protocol stack.

PCI Express uses packets to communicate information
between components. Packets are formed in the Transaction
Layer 305 and Data Link Layer 310 to carry the information
from the transmitting component to the receiving component.
As the transmitted packets flow through the other layers, they
are extended with additional information necessary to handle
packets at those layers. At the receiving side the reverse
process occurs and packets get transformed from their Physi-
cal Layer 320 representation to the Data Link Layer 310
representation and finally (for Transaction Layer Packets) to
the form that can be processed by the Transaction Layer 305
of the receiving device.

Transaction Layer

In one embodiment, transaction layer 305 is to provide an
interface between a device’s processing core and the inter-
connect architecture, such as data link layer 310 and physical
layer 320. In this regard, a primary responsibility of the trans-
action layer 305 is the assembly and disassembly of packets
(i.e.,transaction layer packets, or TLPs). The translation layer
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305 typically manages credit-base flow control for TLPs.
PCle implements split transactions, i.e. transactions with
request and response separated by time, allowing a link to
carry other traffic while the target device gathers data for the
response.

In addition PCle utilizes credit-based flow control. In this
scheme, a device advertises an initial amount of credit for
each of the receive buffers in Transaction Layer 305. An
external device at the opposite end of the link, such as con-
troller hub 215 in FIG. 2, counts the number of credits con-
sumed by each TLP. A transaction may be transmitted if the
transaction does not exceed a credit limit. Upon receiving a
response an amount of credit is restored. An advantage of a
credit scheme is that the latency of credit return does not
affect performance, provided that the credit limit is not
encountered.

In one embodiment, four transaction address spaces
include a configuration address space, a memory address
space, an input/output address space, and a message address
space. Memory space transactions include one or more of
read requests and write requests to transfer data to/from a
memory-mapped location. In one embodiment, memory
space transactions are capable of using two different address
formats, e.g., a short address format, such as a 32-bit address,
or a long address format, such as 64-bit address. Configura-
tion space transactions are used to access configuration space
of the PCle devices. Transactions to the configuration space
include read requests and write requests. Message space
transactions (or, simply messages) are defined to support
in-band communication between PCle agents.

Therefore, in one embodiment, transaction layer 305
assembles packet header/payload 306. Format for current
packet headers/payloads may be found in the PCle specifica-
tion at the PCle specification website.

Quickly referring to FIG. 4, an embodiment of a PCle
transaction descriptor is illustrated. In one embodiment,
transaction descriptor 400 is a mechanism for carrying trans-
action information. In this regard, transaction descriptor 400
supports identification of transactions in a system. Other
potential uses include tracking modifications of default trans-
action ordering and association of transaction with channels.

Transaction descriptor 400 includes global identifier field
402, attributes field 404 and channel identifier field 406. In the
illustrated example, global identifier field 402 is depicted
comprising local transaction identifier field 408 and source
identifier field 410. In one embodiment, global transaction
identifier 402 is unique for all outstanding requests.

According to one implementation, local transaction iden-
tifier field 408 is a field generated by a requesting agent, and
it is unique for all outstanding requests that require a comple-
tion for that requesting agent. Furthermore, in this example,
source identifier 410 uniquely identifies the requestor agent
within a PCle hierarchy. Accordingly, together with source ID
410, local transaction identifier 408 field provides global
identification of a transaction within a hierarchy domain.

Attributes field 404 specifies characteristics and relation-
ships of the transaction. In this regard, attributes field 404 is
potentially used to provide additional information that allows
modification of the default handling of transactions. In one
embodiment, attributes field 404 includes priority field 412,
reserved field 414, ordering field 416, and no-snoop field 418.
Here, priority sub-field 412 may be modified by an initiator to
assign a priority to the transaction. Reserved attribute field
414 is left reserved for future, or vendor-defined usage. Pos-
sible usage models using priority or security attributes may be
implemented using the reserved attribute field.
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In this example, ordering attribute field 416 is used to
supply optional information conveying the type of ordering
that may modify default ordering rules. According to one
example implementation, an ordering attribute of “0”” denotes
default ordering rules are to apply, wherein an ordering
attribute of “1” denotes relaxed ordering, wherein writes can
pass writes in the same direction, and read completions can
pass writes in the same direction. Snoop attribute field 418 is
utilized to determine if transactions are snooped. As shown,
channel ID Field 406 identifies a channel that a transaction is
associated with.

Link Layer

Link layer 310, also referred to as data link layer 310, acts
as an intermediate stage between transaction layer 305 and
the physical layer 320. In one embodiment, a responsibility of
the data link layer 310 is providing a reliable mechanism for
exchanging Transaction Layer Packets (TLPs) between two
components a link. One side of the Data Link Layer 310
accepts TLPs assembled by the Transaction Layer 305,
applies packet sequence identifier 311, i.e. an identification
number or packet number, calculates and applies an error
detection code, i.e. CRC 312, and submits the modified TLPs
to the Physical Layer 320 for transmission across a physical to
an external device.

Physical Layer

Inone embodiment, physical layer 320 includes logical sub
block 321 and electrical sub-block 322 to physically transmit
a packet to an external device. Here, logical sub-block 321 is
responsible for the “digital” functions of Physical Layer 321.
In this regard, the logical sub-block, includes a transmit sec-
tion to prepare outgoing information fir transmission by
physical sub-block 322, and a receiver section to identify and
prepare received information before passing it to the Link
Layer 310.

Physical block 322 includes a transmitter and a receiver.
The transmitter is supplied by logical sub-block 321 with
symbols, which the transmitter serializes and transmits onto
to an external device. The receiver is supplied with serialized
symbols from an external device and transforms the received
signals into a bit-stream. The bit-stream is de-serialized and
supplied to logical sub-block 321. In one embodiment, an
8b/10b transmission code is employed, where ten-bit sym-
bols are transmitted/received. Here, special symbols are used
to frame a packet with frames 323. In addition, in one
example, the receiver also provides a symbol clock recovered
from the incoming serial stream.

As stated above, although transaction layer 305, link layer
310, and physical layer 320 are discussed in reference to a
specific embodiment of a PCle protocol stack, a layered pro-
tocol stack is not so limited. In fact, any layered protocol may
be included/implemented. As an example, an port/interface
that is represented as a layered protocol includes: (1) a first
layer to assemble packets, i.e. a transaction layer; a second
layer to sequence packets, i.e. a link layer; and a third layer to
transmit the packets, i.e. a physical layer. As a specific
example, a common standard interface (CSI) layered protocol
is utilized.

Referring next to FIG. 5, an embodiment of a PCle serial
point to point fabric is illustrated. Although an embodiment of
a PCle serial point-to-point link is illustrated, a serial point-
to-point link is not so limited, as it includes any transmission
path for transmitting serial data. In the embodiment shown, a
basic PCle link includes two, low-voltage, differentially
driven signal pairs: a transmit pair 506/511 and a receive pair
512/507. Accordingly, device 505 includes transmission
logic 506 to transmit data to device 510 and receiving logic
507 to receive data from device 510. In other words, two
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transmitting paths, i.e. paths 516 and 517, and two receiving
paths, i.e. paths 518 and 519, are included in a PCle link.

A transmission path refers to any path for transmitting data,
such as a transmission line, a copper line, an optical line, a
wireless communication channel, an infrared communication
link, or other communication path. A connection between two
devices, such as device 505 and device 510, is referred to as a
link, such as link 415. A link may support one lane—each lane
representing a set of differential signal pairs (one pair for
transmission, one pair for reception). To scale bandwidth, a
link may aggregate multiple lanes denoted by xN, where N is
any supported Link width, suchas 1, 2,4, 8, 12, 16, 32, 64, or
wider.

A differential pair refers to two transmission paths, such as
lines 416 and 417, to transmit differential signals. As an
example, when line 416 toggles from a low voltage level to a
high voltage level, i.e. a rising edge, line 417 drives from a
high logic level to a low logic level, i.e. a falling edge. Dif-
ferential signals potentially demonstrate better electrical
characteristics, such as better signal integrity, i.e. cross-cou-
pling, voltage overshoot/undershoot, ringing, etc. This allows
for better timing window, which enables faster transmission
frequencies.

Error handling and containment can be important elements
of an interconnect platform such as PCle, as well as other
interconnect platforms, including Mobile Industry Processor
Interface (MIPI), Intel® Quick Path Interconnect (QPI), and
other interconnect platforms and architectures. For instance,
in a multi-socket environment, an error caused by a single
transaction can result in race conditions of dropped data,
system-wide resets, and other effects. In some traditional
architectures, inbound packets associated with an error have
been allowed to continue to propagate within a system until
an error handler was invoked and took appropriate action.
Wait times for error handler action have, in some instances,
resulted in large windows where an error, and subsequent
data, were allowed to remain uncontained, among other
effects. In such instances, system (host) memory may be left
unprotected as subsequent write transactions directed at sys-
tem memory or completion transactions with data continue to
propagate until the error handler takes action to remediate a
detected error, among other issues.

In some implementations, a live error recovery (LER) fea-
ture can be supported on ports in an interconnect architecture,
such as PCle-compliant ports. LER can be utilized to trap
errors at a root port where the error is detected and prevent
propagation of the error beyond the port. Detection of an error
can trigger live error recovery by causing a link to be forced
into a link down state causing all outbound requests to be
aborted and all inbound packets following the packet that
triggered the LER condition to also be dropped. This can
cause the error to be contained at a particular port where the
error was detected. The error can be reported to global error
detection and handling modules, including identification of
the port and link where the error was detected. Software-
based error assessment tools, such as error handlers, can then
process and clear the reported error, in some cases, without a
system-wide reset. Upon confirming that the inbound and
outbound queues of the port of the downed link have been
drained, recovery of the link can be initiated so as to bring the
link back up to a transmitting state (e.g., following contain-
ment and clearing of the error), again, without a system-wide
reset.

In one example implementation, a live error recovery
(LER) mode can include detection of a particular defined
error, such as an Advanced Error Reporting (AER), other
PCle error, or a proprietarily-defined error on an inbound or
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outbound path of a PCle-compliant port. An error mask of the
error can be identified and used to determine whether the error
type has been defined to trigger the (LER) mode. On an error
that triggers an LER mode event, the associated link of the
port is forced to a Link Down state and all outbound requests
and inbound transactions are dropped. Further, completion
packets are also be dropped, although, in some cases, inter-
face logic can synthesize master abort completions to be sent
to a core (or other PCle port) that originated the request, in
lieu of the dropped completions. A software-based controller
can check a LER mode “queue empty” status indicator to
identify that all the inbound (and outbound) queues are empty
and the controller can trigger an exit from the LER mode to
allow link training fir the down link to begin to recover the
link. In one example, functionality associated with the LER
mode can be accommodated through a PCle Extended Capa-
bility structure, or other register or structure for easy identi-
fication of LER-related conditions as well as future flexibility.

Turning to FIG. 6, a simplified representation of an
example LER capability structure 605 is shown. Various
fields or portions can be provided within an example capabil-
ity structure. For instance, in the example of F1G. 6, capability
filed can include an LER capability (LER_CAP) field, an
LER header (LER_HDR) field, an LER control status
(LER_CTRLSTS) field, an LER uncorrectable error mask
(LER_UNCERRMSK) field, an LER uncorrectable propri-
etary error mask (LER_XPUNCERRMSK) field, an LER
root port error mask (LER_RPERRMSK) field, among
potentially other fields. An LER_CAP capability field can
identify the LER capability structure as well as point to the
next capability structure. The LER_HDR field can be at least
partially vendor-defined and identify the version and features
of'the LER functionality adopted by a particular device. Fur-
ther,the LER_CAP and LER_HDR can identify whether (and
to what extent) a device supports LER. Through the identifi-
cation of a version of LER supported by a particular device
(and corresponding port(s)), software controllers can deter-
mine the LER features supported by the particular device,
among other examples.

In the case of a LER_CTRLSTS capability field, various
aspects and control bits can be provided for use in providing
an LER mode. For instance, the LER_CTRLSTS field can
embody an LER control and status register with various con-
trol bits to enable the LER and various status bits of the LER
functionality including the queue empty condition, LER
severity mapping, aggressive dropping modes, interrupt
enablement, severity remapping, among other examples.

Various error masks can be provided through an LER capa-
bility structure for use in identifying which error codes are to
trigger an LER condition. PCle and other platforms can sup-
port a variety of error condition codes and corresponding
masks. LER can provide additional masks that can be pro-
cessed together with standard error masks to cause LER to be
enabled, among other examples. In one example, LER masks
can be provided that map to corresponding error status masks
provided through the port’s architecture. For instance, a PCle
platform can include an uncorrectable error mask register, a
root port error mask register, one or more proprietary error
mask registers (e.g., to extend the set of errors that can be
masked beyond what has been defined in the platform’s for-
mal specification), and the LER capability structure can
include corresponding error masks such as an LER uncorrect-
able error mask (LER_UNCERRMSK) and an LER uncor-
rectable proprietary error mask (LER_XPUNCERRMSK),
and an LER root port error mask (LER_RPERRMSK),
among potentially other examples. In one implementation,
the LER_UNCERRMSK bits can bits can serve to mask error
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events from the LER mode. In other words, based on the
values of the LER error masks, it can be determined whether
a particular error type (e.g., also identified or recognized in
the platform’s error mask registers) has been designated to
trigger LER upon detection. A user, such as an administrator,
can define which mask bits of the LER mask registers are to
be set to select which errors trigger LER. As an example, if a
bit corresponding to a malformed transaction layer packet
(TLP) has a value set in an uncorrectable error status mask
register of a platform (e.g., a PCle-compliant platform) to
indicate that such TLP errors are to be logged as an uncor-
rectable (or other) error, and a corresponding bit of an
LER_UNCERRMSK register indicates that the same errors
are to trigger LER, when a malformed TLP error is detected
(e.g., using transaction layer logic), LER mode can be trig-
gered, among other potential examples.

Turning momentarily to FIG. 7, a representation of an
example LER control and status register (or LER_CTRLSTS
capability field) 705 is illustrated. In the particular example of
FIG. 7, various fields and control bits can be provided, such as
an LER_Status bit, an LER_Port_Quiesced, an LER_Enable
bit, an LER_Severity_Enable bit, an LER_Drop_TXN bit,
and an LER_INTEN bit, among potentially other examples.
In one example, the LER_Status, or status, bit can indicates
that an error was detected that caused a PCle port to go into a
live error recovery (LER) mode. As noted above, in LER
mode, the link can be immediately forced into a Link Down
disabled state and all outbound transactions are aborted (in-
cluding packets that may have caused the error) when this bit
is set. Further, after the status bit is set, it may only be cleared
after all the associated unmasked status bits are cleared, or the
corresponding [LER mask bits are set, among other conditions
and examples. Once the unmasked error conditions are
cleared, then this bit may be cleared by software writing a
value (e.g., “1”) to the field. Clearing the status bit after an
LER event can cause the link to automatically begin retrain to
a transmitting state, ending the aborting of outbound transac-
tion and blocking of inbound transactions. In some imple-
mentations, forcing a link to a down state can be configured
such that the LER event does not trigger a “surprise Link-
Down” error. Further, in some implementations, some
devices, such as certain PCle cards, can be configured to go
into internal reset when they receive training sequences that
indicate the “Disabled” state, among other examples.

Continuing with the example of FIG. 7, a status register
705 can include a port quiesced bit (e.g., LER_Port_Qui-
esced) indicating that the port has no more pending inbound
or outbound packets after the porthas entered LET mode. The
port quiesced bit can be used to confirm that packets have
successfully drained from a link forced into a link down state
following an LER event. Further, a software controller, such
an error management tool or error handler, can reference the
port quiesced bit to identify when it is safe to clear the LER
status bit and allow the port to be brought out of LER mode.

Other bits can be utilized to enable various functionality
provided through an LER mode. For instance, an LER inter-
rupt enable bit (e.g., LER_INTEN) can indicate whether an
interrupt, such as a Message Signaled Interrupt (MS]), is to be
generated when an LER, event is triggered (e.g., through the
setting of the LER status bit). Further, an LER transaction
drop bit (e.g., LER_Drop_Txn) can be used to identify
whether, after entering LER, subsequent transactions will be
dropped as soon as the port configuration allows. Addition-
ally, an LER severity change bit (e.g., LER_Severity_En) can
be provided that, when set, is to force errors that trigger LER
mode to be signaled as a correctable error, rather than an
uncorrectable (or similar) error. For instance, enabling
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LER_Severity_En can cause an error that would ordinarily
signal as Uncorrectable Non-Fatal Severity 1 or Uncorrect-
able Fatal Severity 2 to instead be signaled as Correctable
Severity 0. Such a bit can be set, for instance, to account for
enhance error handling capabilities at a device, among other
circumstances. Further, an additional bit (e.g., LER_Enable)
can be provided to selectably enable or disable LER function-
ality, effectively turning on or off LER functionality.

Turning to FIG. 8, a schematic block diagram 800 is shown
of example logic that can be used to implement at least a
portion of LER functionality. For instance, an error signal 805
can be received corresponding to a particular type of error
detected at a port. The error condition of the signal 805 can be
masked by a standard error status mask 810 to determine
(e.g., at 815) whether the error condition is of a severity
higher than “Severity 0” (e.g., a correctable error). If so, a
signal 815 can progress (e.g., to AND gate 825) to be com-
pared against LER error mask 820 to determine whether the
error condition is to trigger an LER mode. If the LER func-
tionality is enabled (e.g., at 835 of LER control status register
705) and LER applies to the detected error (at 805), an LER
status bit can be set (e.g., at 830) to invoke LER mode and
three the link into a disabled state 840. For instance, a hand-
shake, disable training sequences, or other signals can be sent
to send the link into a down state. In the disabled or down
state, a master abort is applied to all outbound requests (e.g.,
by constructing a complete with all “1”’s), all outbound
completions are dropped, and all inbound packets are to be
dropped. Further, if a severity change bit 845 is set, logic (at
850) can three the severity of the error condition from the
higher severity rating (e.g., uncorrectable Severity 1 or Sever-
ity 2) to indicate a lower, correctable severity rating. This can
ensure that more invasive steps (e.g., system wide resets) are
not performed in response to the error condition (communi-
cated through signal 805).

In LER mode, outstanding transactions and inbound and
outbound packets are dropped and drained from the link.
When hardware (or software) logic drops the pending trans-
actions, a port quiesced bit 855 can be set. Another controller,
such as an at least partially software-based error handler, can
attempt to resolve and analyze the error condition. The error
handler (or other tool) can further clear error registers (e.g.,
upon resolution of the error condition). Additionally, upon
clearing the error registers, the error handler can identify that
no transactions are pending on the link (or port) by virtue of
the value of the port quiesced bit 855, and clear the LER status
bit to cause the link to exit LER mode. In one example, an exit
from LER includes retraining of the link and bringing back up
to an active transmitting state.

As noted above, an LER control status register (e.g., 705)
can include a control bit to change the severity of the LER
mapping to change the severity of an error code triggering the
LER. For instance, as shown in the example illustrated by the
schematic diagram 900 of FIG. 9, an LER severity change (or
mapping) bit (e.g., at 845) in the LER control status register
can be enabled. Enabling the LER control status register can
cause an error condition (e.g., 905) that would ordinarily have
been treated as an uncorrectable error (e.g., without. LER
enabled) to be instead signaled as a correctable Severity 0
error, instead of a Severity 1 or 2. Accordingly, in this par-
ticular example, a corresponding Severity 0 bit can be set, a
Severity 0 MSI can be generated; and the Severity 0 ERR[0]
pin can be asserted instead of Severity 1 or 2. Without severity
remapping, a higher-severity interrupt, such as a system man-
agement interruption (SW), non-maskable interrupt (NMI),
machine check architecture (MCA) error, or other interrupt or
error event can be triggered even though the error is contained



US 9,262,270 B2

15

atthe port by the LER mode. The example severity remapping
can make sure that errors triggered due to LER are correctly
contained by remapping the severity to lower severity (cor-
rectable errors) so that a SMI, NMI, etc. would not be trig-
gered from the global error generation logic (e.g., 910).
Instead, global error generation logic 910 can process the
error as a Severity O error.

As introduce above, in LER mode, different packets can be
handled immediately after the LER mode is triggered so as to
contain an error at a particular port. For instance, the LER can
be triggered on the same clock cycle the error is recorded in
the error registers to initiate the process of bringing down the
affected link. Table I shows how various packets types are to
be handled upon triggering LER mode:

TABLE 1
Inbound Outbound
Packet Type Path Path Comments
Non-Posted  Dropped Dropped  Credits re-initialized when the
TLP line retrains
Posted TLP  Dropped Dropped  Credits re-initialized when the
line retrains
Completion  Dropped; Dropped  Core will hang without a CMP,
TLP new master so a master abort completion is
abort syn- synthesized immediately after
thesized LER and completion credits are
completion reinitialized when link retrains

sent

As noted above, in some instances, inbound completion
packets, while being dropped in LER mode, can be inter-
cepted and synthesized so as to communicate a corresponding
master abort completion to the core responsible for sending
the corresponding request to which the complete was to
apply. In some instances, a core can await the dropped
completion and the synthesized master abort completion can
prevent the core from hanging.

Different classes of error can be enabled for LER. Error
classes can include, for instance, errors associated with an
incoming (e.g., from another device or associated remote
agent) packet (such as a TLP), errors associated with an
outgoing (e.g., outbound to another device or associated
remote agent) packet, as well as non-packet errors, such as a
defective port error, among other examples.

Turning to FIG. 10, a flow diagram is shown illustrating an
example LER event relating to an error associated with one or
more incoming TLPs on a link. An endpoint 1005 can be
communicating with a host (e.g., 1025) over a port of a
PCle-compliant link, including a PCle Physical layer 1010,
data link layer 1015, and transaction layer 1020. Multiple
write (WR) and read (RD) requests packets can be sent over
a PCle physical layer 1010 in a transmitting [.O state. Some of
the packets can be queued or buffered in a TLP queue 1030
before being passed to system or host memory 1025, among
other examples.

In the example of FIG. 10, an error, such as a malformed
TLP error, can be determined in connection with a write
request packet WR3. Port error detection logic can detect the
error and further determine that the error is of a type that is to
trigger the LER state. Accordingly, the detection logic can
immediately (e.g., on the same clock cycle) assert the LER
status signal and thereby trigger the transition of the associ-
ated link to a down or disabled state 1035. The packet respon-
sible for the error can be dropped, in some cases, according to
standard protocol of the platform based on the error (e.g.,
consistent with the PCle formal specification). Further, the
asserted LER status signal can also serve to drop every sub-
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sequent inbound packet (e.g., RD 3, WR 4, RD 4, WR 5, etc.)
from the endpoint 1005 while the link transitions to the dis-
abled state to provide error containment at the port. In this
manner, memory (e.g., 1025) can be protected from corrup-
tion from TLPs following the TLP (e.g., WR 3) responsible
for the error condition. The endpoint 1005, upon identifying
entry into the disabled state may stop sending additional
TLPs. Further, outbound packets (e.g., RD_CMPI1,
RD_CMP2, etc.) can also be dropped during entry into and
within the LER mode. However, in some implementations, if
an outbound TLP is being transmitted when LER mode is
initiated, transmission of the outbound TLP may be allowed
to complete uninterrupted.

FIG. 11 illustrates another representation of an example
transition into an LER mode. A malformed or other erroneous
TLP (e.g., “bad” packet 1105) can be processed by the trans-
mitter of an endpoint 1005 and released on the transmitter
(Tx(ex)) of the endpoint 1005 on a PCle link to be processed
by the integrated 1/O logic (110) 1110 (e.g., of a port). The 11O
can decode the had TLP 1105 and determine (e.g., from LER
error masks) that the TLP 1105 is to trigger an LER event and
the bad TLP 1105 can be dropped. Accordingly, the IO 1110
can initiate the forcing down of the link, by going into a
recovery state and then, from the recovery state to a disabled
state. Further, the IIO can begin sending disable training
sequences (e.g., 1115). Further, the receiver (Rx(ex)) of the
endpoint 1005 can receive the training sequences and identify
that the link is being brought down and cease sending TLPs
and begin, itself, repeating the training sequences (e.g., at
1120). In one example, training sequences can include a
16-byte TS1 training sequence, among other potential
examples. Training sequences (e.g., 1115) can be sent to
direct the link into recovery state. The training sequences can
be sent with the disabled bit set, so that both links enter
disabled state.

Inaccordance with the assertion of an LER signal and entry
into an LER state, a flush (e.g., 1125) of the 11O pipeline can
commence. TLPs can be buffered in 11O switch queues. In
LER, a flush can include the draining the queues, decoding
each of the TLPs received from the endpoint 1005 up to when
the endpoint 1005 quits sending TLPs, and dropping the
packets from the retry buffers. The transaction layer can also
discard any outstanding transactions. For instance, entering a
disabled state can cause the data link layer to transition into a
DL Inactive state, which can cause all packets in the Data
Link Layer Retry Buffer to be discarded, and the transaction
layer to discard any outstanding transactions. Additionally, as
described above, LER mode can further include synthesizing
one or more dropped completion packets, changing a severity
of the LER condition (e.g., to correctable), among other
examples. When all inbound and outbound queues have been
drained, all registers have been cleared, and the LER status bit
cleared, the link can be brought out of LER mode and re-
trained.

Errors involving outgoing packets can be handled similarly
to errors resulting from inbound packets. In one example, if
an incoming non-posted requests results in a completion
being returned with Unsupported Request or Completer
Abort status, these completions may be dropped and trigger
LER mode. In another example, if an outbound parity error or
poisoned TLP triggers an LER, such poisoned TLPs can be
dropped. In the case of a non-fatal poison error detected at a
port outbound, an error can be logged in standard error log
registers on the inbound path and the offending packet can be
dropped. Further, as with inbound errors, the enabling of LER
mode can result in generation of a correctable error interrupt,
instead of a non-fatal or fatal uncorrectable interrupt (e.g., if
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the LER, severity remapping feature is enabled). Further,
LER, mode triggered for outbound error can further result in
the PCI Express port link is forced down, with all outbound
requests to that link aborted and outbound completions
dropped, including the request or completion that caused the
error. The link can then enter recovery as in previous
examples.

Similar principles can also be applied to non-packet errors.
For instance, LER, as described above, can be used for iso-
lating errors to a defective port. For instance, LER can disable
the port that detected errors that are considered fatal and could
cause system shutdown. Such fatal errors can include, for
example, flow control protocol errors, surprise down errors,
and data link layer protocol errors, among other examples.

Note that the apparatus’, methods’, and systems described
above may be implemented in any electronic device or system
as aforementioned. As specific illustrations, the figures below
provide exemplary systems for utilizing the invention as
described herein. As the systems below are described in more
detail, a number of different interconnects are disclosed,
described, and revisited from the discussion above. And as is
readily apparent, the advances described above may be
applied to any of those interconnects, fabrics, or architec-
tures.

Referring now to FIG. 12, shown is a block diagram of a
second system 1200 in accordance with an embodiment of the
present invention. As shown in FIG. 12, multiprocessor sys-
tem 1200 is a point-to-point interconnect system, and
includes a first processor 1270 and a second processor 1280
coupled via a point-to-point interconnect 1250. Each of pro-
cessors 1270 and 1280 may be some version of a processor. In
one embodiment, 1252 and 1254 are part of a serial, point-
to-point coherent interconnect fabric, such as Intel’s Quick
Path Interconnect (QPI) architecture. As a result, the inven-
tion may be implemented within the QPI architecture.

While shown with only two processors 1270, 1280, it is to
be understood that the scope of the present invention is not so
limited. In other embodiments, one or more additional pro-
cessors may be present in a given processor.

Processors 1270 and 1280 are shown including integrated
memory controller units 1272 and 1282, respectively. Proces-
sor 1270 also includes as part of its bus controller units
point-to-point (P-P) interfaces 1276 and 1278; similarly, sec-
ond processor 1280 includes P-P interfaces 1286 and 1288.
Processors 1270, 1280 may exchange information via a point-
to-point (P-P) interface 1250 using P-P interface circuits
1278, 1288. As shown in FIG. 12, IMCs 1272 and 1282
couple the processors to respective memories, namely a
memory 1232 and a memory 1234, which may be portions of
main memory locally attached to the respective processors.

Processors 1270, 1280 each exchange information with a
chipset 1290 via individual P-P interfaces 1252, 1254 using
point to point interface circuits 1276, 1294, 1286, 1298.
Chipset 1290 also exchanges information with a high-perfor-
mance graphics circuit 1238 via an interface circuit 1292
along a high-performance graphics interconnect 1239.

A shared cache (not shown) may be included in either
processor or outside of both processors; yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1290 may be coupled to a first bus 1216 via an
interface 1296. In one embodiment, first bus 1216 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.
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As shown in FIG. 12, various I/O devices 1214 are coupled
to first bus 1216, along with a bus bridge 1218 which couples
first bus 1216 to a second bus 1220. In one embodiment,
second bus 1220 includes a low pin count (LPC) bus. Various
devices are coupled to second bus 1220 including, for
example, a keyboard and/or mouse 1222, communication
devices 1227 and a storage unit 1228 such as a disk drive or
other mass storage device which often includes instructions/
code and data 1230, in one embodiment. Further, an audio I/O
1224 is shown coupled to second bus 1220. Note that other
architectures are possible, where the included components
and interconnect architectures vary. For example, instead of
the point-to-point architecture of FIG. 12, a system may
implement a multi-drop bus or other such architecture.

Turning next to FIG. 13, an embodiment of a system on-
chip (SOC) design in accordance with the inventions is
depicted. As a specific illustrative example, SOC 1300 is
included in user equipment (UE). In one embodiment, UE
refers to any device to be used by an end-user to communi-
cate, such as ahand-held phone, smartphone, tablet, ultra-thin
notebook, notebook with broadband adapter, or any other
similar communication device. Often a UE connects to a base
station or node, which potentially corresponds in nature to a
mobile station (MS) in a GSM network.

Here, SOC 1300 includes 2 cores 1306 and 1307. Similar to
the discussion above, cores 1306 and 1307 may conform to an
Instruction Set Architecture, such as an Intel® Architecture
Core™-based processor, an Advanced Micro Devices, Inc.
(AMD) processor, a MIPS-based processor, an ARM-based
processor design, or a customer thereof, as well as their lic-
ensees or adopters. Cores 1306 and 1307 are coupled to cache
control 1308 that is associated with bus interface unit 1309
and L2 cache 1312 to communicate with other parts of system
1300. Interconnect 1310 includes an on-chip interconnect,
such as an IOSF, AMBA, or other interconnect discussed
above, which potentially implements one or more aspects of
the described invention.

Interface 1310 provides communication channels to the
other components, such as a Subscriber Identity Module
(SIM) 1330 to interface with a SIM card, a boot rom 1335 to
hold boot code for execution by cores 1306 and 1307 to
initialize and boot SOC 1300, a SDRAM controller 1340 to
interface with external memory (e.g. DRAM 1360), a flash
controller 1345 to interface with non-volatile memory (e.g.
Flash 1365), a peripheral control 1350 (e.g. Serial Peripheral
Interface) to interface with peripherals, video codecs 1320
and Video interface 1325 to display and receive input (e.g.
touch enabled input), GPU 1315 to perform graphics related
computations, etc. Any of these interfaces may incorporate
aspects of the invention described herein.

In addition, the system illustrates peripherals for commu-
nication, such as a Bluetooth module 1370, 3G modem 1375,
GPS 1385, and WiFi 1385. Note as stated above, a UE
includes a radio fir communication. As a result, these periph-
eral communication modules are not all required. However, in
a UE some form a radio for external communication is to be
included.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is useful
in simulations, the hardware may be represented using a
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hardware description language or another functional descrip-
tion language. Additionally, a circuit level model with logic
and/or transistor gates may be produced at some stages of the
design process. Furthermore, most designs, at some stage,
reach a level of data representing the physical placement of
various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used,
the data representing the hardware model may be the data
specifying the presence or absence of various features on
different mask layers for masks used to produce the integrated
circuit. In any representation of the design, the data may be
stored in any form of a machine readable medium. A memory
or a magnetic or optical storage such as a disc may be the
machine readable medium to store information transmitted
via optical or electrical wave modulated or otherwise gener-
ated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design is transmitted,
to the extent that copying, buffering, or re-transmission of the
electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may store on
atangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present inven-
tion.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a mod-
ule includes hardware, such as a micro-controller, associated
with a non-transitory medium to store code adapted to be
executed by the micro-controller. Therefore, reference to a
module, in one embodiment, refers to the hardware, which is
specifically configured to recognize and/or execute the code
to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the non-
transitory medium. Often module boundaries that are illus-
trated as separate commonly vary and potentially overlap. For
example, a first and a second module may share hardware,
software, firmware, or a combination thereof, while poten-
tially retaining some independent hardware, software, or
firmware. In one embodiment, use of the term logic includes
hardware, such as transistors, registers, or other hardware,
such as programmable logic devices.

Use of the phrase ‘to” or ‘configured to,” in one embodi-
ment, refers to arranging, putting together, manufacturing,
offering to sell, importing and/or designing an apparatus,
hardware, logic, or element to perform a designated or deter-
mined task. In this example, an apparatus or element thereof
that is not operating is still ‘configured to’ perform a desig-
nated task if it is designed, coupled, and/or interconnected to
perform said designated task. As a purely illustrative
example, a logic gate may provide a 0 ora 1 during operation.
But a logic gate ‘configured to’ provide an enable signal to a
clock does not include every potential logic gate that may
providea 1 or 0. Instead, the logic gate is one coupled in some
manner that during operation the 1 or 0 output is to enable the
clock. Note once again that use of the term ‘configured to’
does notrequire operation, but instead focus on the latent state
of an apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element is designed to
perform a particular task when the apparatus, hardware, and/
or element is operating.

Furthermore, use of the phrases ‘capable of/to,” and or
‘operable to,” in one embodiment, refers to some apparatus,
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logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable to,
or operable to, in one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the
apparatus, logic, hardware, and/or element is not operating
but is designed in such a manner to enable use of an apparatus
in a specified manner.

A value, as used herein, includes any known representation
of'a number, a state, a logical state, or a binary logical state.
Often, the use of logic levels, logic values, or logical values is
also referred to as 1°s and 0’s, which simply represents binary
logic states. For example, a 1 refers to a high logic level and
Orefers to alow logic level. In one embodiment, a storage cell,
such as a transistor or flash cell, may be capable of holding a
single logical value or multiple logical values. However, other
representations of values in computer systems have been
used. For example the decimal number ten may also be rep-
resented as a binary value of 1010 and a hexadecimal letter A.
Therefore, a value includes any representation of information
capable of being held in a computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer to
a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e. reset, while an updated value potentially includes a
low logical value, i.e. set. Note that any combination of values
may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via instruc-
tions or code stored on a machine-accessible, machine read-
able, computer accessible, or computer readable medium
which are executable by a processing element. A non-transi-
tory machine-accessible/readable medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form readable by a machine, such as a computer
or electronic system. For example, a non-transitory machine-
accessible medium includes random-access memory (RAM),
such as static RAM (SRAM) or dynamic RAM (DRAM);
ROM; magnetic or optical storage medium; flash memory
devices; electrical storage devices; optical storage devices;
acoustical storage devices; other form of storage devices for
holding information received from transitory (propagated)
signals (e.g., carrier waves, infrared signals, digital signals);
etc, which are to be distinguished from the non-transitory
mediums that may receive information there from.

Instructions used to program logic to perform embodi-
ments of the invention may be stored within a memory in the
system, such as DRAM, cache, flash memory, or other stor-
age. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computer), but is not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc). Accordingly, the com-
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puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer)

The following examples pertain to embodiments in accor-
dance with this Specification. One or more embodiments may
provide an apparatus, a system, a machine readable storage, a
machine readable medium, and a method to identify a packet
at a port of a serial data link, identify a packet at a port of a
serial data link, determine that the packet is associated with an
error, and initiate entry into an error recovery mode based on
the determination that the packet is associated with the error.
Entry into the error recovery mode can cause the serial data
link to be forced down.

In at least one example, forcing the data link down causes
all subsequent inbound packets to be dropped.

In at least one example, forcing the data link down further
causes all pending outbound requests and completions to be
aborted.

In at least one example, error logic is to generate and send
amaster abort completion for one of the aborted completions.

In at least one example, error logic is further to drop the
packet.

In at least one example, the error is at least one of a trans-
action layer packet error, a flow control protocol error, and a
data link layer protocol error.

In at least one example, the error logic is further to deter
mine that the error is one of a set of errors that is to trigger the
error recovery mode.

In at least one example, the set of errors is identifiable from
an error mask register corresponding to the error recovery
mode.

In at least one example, the set of errors is further included
in errors identified as uncorrectable errors by another error
mask.

In at least one example, entering the error recovery mode
includes entering a disable state.

In at least one example, the error is associated with an
uncorrectable severity and the error logic is further to force
association of the error with a correctable severity.

In at least one example, the error logic is further to cause
the error to be corrected.

In at least one example, the error logic is further to identify
that all transactions on the data link have been dropped and
identify that all error registers for the data link have been
cleared.

In at least one example, the error logic is to determine that
the transactions have been dropped based on a quisced control
bit value of a register.

In at least one example, the error logic is to clear an error
recovery bit of a status control register corresponding to the
data link based on identifying that all transactions on the data
link have been dropped and that all error registers for the data
link have been cleared.

In at least one example, the error logic is further to initiate
retraining of the link based on the clearing of the error recov-
ery bit. The error recovery bit can indicate whether error
recovery mode is active or not.

In at least one example, entry into the error recovery mode
is to be initiated on a same clock cycle as detection of the
error.

In at least one example, forcing down the data link includes
entering a recovery state, and transitioning from the recovery
state to a disabled state.
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In at least one example, forcing down the data link includes
sending a sequence of training sequences, and the training
sequences include a bit indicating an attempted entry into the
disabled state.

In at least one example, the error is designated an uncor-
rectable error, but the erroris to be designated as a correctable
error, where the error instead causes a correctable error inter-
rupt.

In atleast one example, the packet is an outbound packet to
be sent to another device over the data link.

In at least one example, the packet is an inbound packet
received from another device over the data link.

In at least one example, the packet is sent over an intercon-
nect, and, in some instances, a Peripheral Component Inter-
connect Express (PCle)-compliant interconnect.

In at least one example, the packet is communicated
between a first and second microprocessor.

One or more embodiments may provide an apparatus, a
system, a machine readable storage, a machine readable
medium, and a method to interface with a serial data link,
receive a packet communicated using the data link, determine
that the packet is associated with an error, and initiate entry
into an error recovery mode based on the determination that
the packet is associated with the error. Entry into the error
recovery mode can cause an inbound packet to be dropped
and an outbound request to be aborted.

In at least one example, interface logic is to abort all pend-
ing outbound requests and completions during error recovery
mode.

In at least one example, interface logic is to drop all
inbound packets during error recovery mode.

One or more embodiments may provide an apparatus, a
system, a machine readable storage, a machine readable
medium, and a method to provide error logic, with transaction
layer logic, data link layer logic, and physical layer logic, to
detect a particular error associated with a particular packet,
determine, based on a first register value, that the particular
error is to be designated as an uncorrectable error, determine,
based on a second register value, that the particular error is to
trigger an error recovery mode, wherein the error recovery
mode is to cause inbound and outbound packets subsequent to
the particular error to be dropped, determine from a third
register value whether the error recovery mode is enabled,
and service the particular error based at least in part on the
first, second, and third register values.

In at least one example, the error logic is further to initiate
the error recovery mode based on a determination that the
third register value indicates that the error recovery mode is
enabled, and initiating the error recover mode includes assert-
ing an error recovery status control bit of a register.

In at least one example, the error logic is further to identify
that the error recovery status control bit is cleared, and initiate
reactivation of the data link based on the clearing of the error
recovery status control bit.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifications
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and changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

What is claimed is:

1. An apparatus comprising:

error logic, implemented at least in part in hardware cir-

cuitry, to:

identify a packet at a port of a serial data link;

receive an error code corresponding to the packet;

determine, from the error code, that the packet is asso-
ciated with an error of a particular severity level,
wherein errors of the particular severity level are to be
handled using an error recovery mode;

determine that the severity level of the error is to be
changed from the particular severity level to a lower
severity level, wherein errors of the lower severity
level are to be corrected in lieu of entry into the error
recovery mode; and

initiate entry into the error recovery mode for another
error of the particular severity level, wherein entry
into the error recovery mode is to cause the corre-
sponding serial data link to be forced down.

2. The apparatus of claim 1, wherein forcing the data link
down causes all subsequent inbound packets to be dropped.

3. The apparatus of claim 2, wherein forcing the data link
down further causes all pending outbound requests and
completions to be aborted.

4. The apparatus of claim 3, wherein the error logic is
further to generate and send a master abort completion for one
of the aborted completions.

5. The apparatus of claim 1, wherein the error logic is
further to drop a packet corresponding to the other error.

6. The apparatus of claim 1, wherein the error is at least one
of'a group comprising: a transaction layer packet error, a flow
control protocol error, and a data link layer protocol error.

7. The apparatus of claim 1, wherein the error logic is
further to determine that the error is one of a set of errors that
is to trigger the error recovery mode.

8. The apparatus of claim 7, wherein determining that the
error is included in the set of errors comprises comparing the
error code to an error bit mask.

9. The apparatus of claim 1, wherein determining that the
severity level of the error is to be changed from the particular
severity level to a lower severity level is based on a compari-
son of the error code with an error bit mask corresponding to
the error recovery mode.

10. The apparatus of claim 1, wherein entering the error
recovery mode includes entering a disabled state.

11. The apparatus of claim 1, wherein the particular sever-
ity level comprises an uncorrectable severity and the lower
severity level comprises a correctable severity.

12. The apparatus of claim 11, wherein the error logic is
further to cause the error to be corrected.

13. The apparatus of claim 1, wherein the error logic is
further to identify that all transactions on the data link have
been dropped and identify that all error registers for the data
link have been cleared.

14. The apparatus of claim 13, wherein the error logic is to
determine that the transactions have been dropped based on a
quiesced control bit value of a register.
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15. The apparatus of claim 13, wherein the error logic is to
clear an error recovery bit of a status control register corre-
sponding to the forced down data link based on identifying
that all transactions on the forced down data link have been
dropped and that all error registers for the forced down data
link have been cleared.

16. The apparatus of claim 15, wherein the error logic is
further to initiate retraining of the forced down link based on
the clearing of the error recovery bit, wherein the error recov-
ery bit indicates whether error recovery mode is active.

17. The apparatus of claim 1, wherein entry into the error
recovery mode is to be initiated on a same clock cycle as
detection of a corresponding error.

18. An apparatus comprising:

logic, implemented at least in part in hardware circuitry, to:

receive a packet on a serial data link;

identify an error code associated with the packet;

determine, from the error code, that the packet is asso-
ciated with an error of a particular severity level,
wherein errors of the particular severity level are to be
handled using an error recovery mode;

determine that the severity level of the error is to be
changed from the particular severity level to a lower
severity level, wherein errors of the lower severity
level are to be corrected in lieu of entry into the error
recovery mode; and

initiate entry into the error recovery mode for another
error of the particular severity level, wherein entry
into the error recovery mode is to cause the logic to
drop an inbound packet and abort an outbound request
following detection of the other error.

19. The apparatus of claim 18, wherein the logic is to abort
all pending outbound requests and completions during error
recovery mode.

20. The apparatus of claim 18, wherein the logic is to drop
all inbound packets during error recovery mode.

21. An apparatus comprising:

error logic, implemented at least in part in hardware cir-

cuitry and comprising transaction layer logic, data link

layer logic, and physical layer logic, wherein the error

logic is to:

detect a particular error associated with a particular
packet;

determine, based on a first register value, that the par-
ticular error is to be designated as an uncorrectable
error;

determine, based on a second register value, that the
particular error is to trigger an error recovery mode,
wherein the error recovery mode is to cause inbound
and outbound packets subsequent to the particular
error to be dropped;

based on determining that the particular error is to trig-
ger the error recovery mode, determine from a third
register value whether the error recovery mode is
enabled; and

service the particular error based at least in part on the
first, second, and third register values.

22. The apparatus of claim 21, wherein the error logic is
further to initiate the error recovery mode based on a deter-
mination that the third register value indicates that the error
recovery mode is enabled, and initiating the error recovery
mode includes asserting an error recovery status control bit of
a register.

23. The apparatus of claim 22, wherein the error logic is
further to:

identify that the error recovery status control bit is cleared;

and
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initiate reactivation of the data link based on the clearing of

the error recovery status control bit.

24. A method comprising:

identifying a packet at a port of a serial data link;

receiving an error code corresponding to the packet;

determining, from the error code, that the packet is associ-
ated with an error of a particular severity level, wherein
errors of the particular severity level are to be handled
using an error recovery mode;

determining that the severity level of the error is to be

changed from the particular severity level to a lower
severity level, wherein errors of the lower severity level
are to be corrected in lieu of entry into the error recovery
mode; and

initiating entry into the error recovery mode for another

error of the particular severity level, wherein entry into
the error recovery mode is to cause the corresponding
serial data link to be forced down.

25. The method of claim 24, further comprising forcing
down the serial data link corresponding to the other error,
wherein forcing down the serial data link corresponding to the
other error includes:

entering a recovery state; and

transitioning from the recovery state to a disabled state.

26. The method of claim 25, wherein forcing down the
other data link includes sending a sequence of training
sequences, and the training sequences include a bit indicating
an attempted entry into the disabled state.

27. The method of claim 24, wherein the packet is an
outbound packet to be sent to another device over the data
link.

10

15

20

25

30

26

28. The method of claim 24, wherein the packet is an
inbound packet received from another device over the data
link.
29. A system comprising:
a first device;
a second device to be communicatively coupled to the first
device over an interconnect, the second device compris-
ing error logic executable to:
identify a packet at a port of a serial data link of the
interconnect;

receive an error code corresponding to the packet;

determine, from the error code, that the packet is asso-
ciated with an error of a particular severity level,
wherein errors of the particular severity level are to be
handled using an error recovery mode;

determine that the severity level of the error is to be
changed from the particular severity level to a lower
severity level, wherein errors of the lower severity
level are to be corrected in lieu of entry into the error
recovery mode; and

initiate an error recovery mode on the port for another
error of the particular severity level, wherein the error
recovery mode is to contain the error triggering the
error recovery mode to the corresponding port.

30. The system of claim 29, further comprising an error
handler.

31. The system of claim 29, wherein the interconnect com-
prises a Peripheral Component Interconnect Express (PCle)-
compliant interconnect.

32. The system of claim 29, wherein the first device com-
prises a first microprocessor and the second device comprises
a second microprocessor.
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